collisions
This commit is contained in:
398
collisions/main.odin
Normal file
398
collisions/main.odin
Normal file
@ -0,0 +1,398 @@
|
||||
package main
|
||||
|
||||
|
||||
import "core:fmt"
|
||||
import "core:log"
|
||||
import "core:math"
|
||||
import "core:math/linalg"
|
||||
import "core:math/rand"
|
||||
import rl "vendor:raylib"
|
||||
|
||||
|
||||
Buddy :: struct {
|
||||
pos: [3]f32,
|
||||
gothit: bool,
|
||||
hit_timer: f32,
|
||||
}
|
||||
|
||||
|
||||
Light :: struct {
|
||||
enabled: i32,
|
||||
used: bool,
|
||||
distanceNear: f32,
|
||||
distanceFar: f32,
|
||||
power: f32,
|
||||
position: [3]f32,
|
||||
color: [4]f32,
|
||||
enabledLoc: i32,
|
||||
distanceNearLoc: i32,
|
||||
distanceFarLoc: i32,
|
||||
powerLoc: i32,
|
||||
positionLoc: i32,
|
||||
colorLoc: i32,
|
||||
shader: ^rl.Shader,
|
||||
}
|
||||
|
||||
light_find_unused :: proc() -> (^Light, int) {
|
||||
for &light, i in lights {
|
||||
if light.enabled == 0 do return &light, i
|
||||
}
|
||||
return nil, -1
|
||||
}
|
||||
|
||||
light_new :: proc(
|
||||
shader: ^rl.Shader,
|
||||
pos: [3]f32,
|
||||
distanceNear: f32 = 0,
|
||||
distanceFar: f32 = 10,
|
||||
power: f32 = 1,
|
||||
color: [4]f32 = {1, 1, 1, 1},
|
||||
) -> ^Light {
|
||||
light, id := light_find_unused()
|
||||
if light == nil do return nil
|
||||
|
||||
light.enabled = 1
|
||||
light.position = pos
|
||||
light.distanceNear = distanceNear
|
||||
light.distanceFar = distanceFar
|
||||
light.power = power
|
||||
light.color = color
|
||||
light.shader = shader
|
||||
|
||||
light_set_uniforms(light, auto_cast id)
|
||||
light_update_uniforms(light)
|
||||
|
||||
return light
|
||||
}
|
||||
|
||||
light_destroy :: proc(light: ^Light) {
|
||||
light.enabled = 0
|
||||
light.used = false
|
||||
light_update_uniforms(light)
|
||||
}
|
||||
|
||||
|
||||
light_set_uniforms :: proc(light: ^Light, i: i32) {
|
||||
light.enabledLoc = rl.GetShaderLocation(light.shader^, rl.TextFormat("lights[%i].enabled", i))
|
||||
light.distanceNearLoc = rl.GetShaderLocation(
|
||||
light.shader^,
|
||||
rl.TextFormat("lights[%i].distanceNear", i),
|
||||
)
|
||||
light.distanceFarLoc = rl.GetShaderLocation(
|
||||
light.shader^,
|
||||
rl.TextFormat("lights[%i].distanceFar", i),
|
||||
)
|
||||
light.powerLoc = rl.GetShaderLocation(light.shader^, rl.TextFormat("lights[%i].power", i))
|
||||
light.positionLoc = rl.GetShaderLocation(
|
||||
light.shader^,
|
||||
rl.TextFormat("lights[%i].position", i),
|
||||
)
|
||||
light.colorLoc = rl.GetShaderLocation(light.shader^, rl.TextFormat("lights[%i].color", i))
|
||||
}
|
||||
|
||||
light_update_uniforms :: proc(light: ^Light) {
|
||||
rl.SetShaderValue(light.shader^, light.enabledLoc, &(light.enabled), .INT)
|
||||
rl.SetShaderValue(light.shader^, light.distanceNearLoc, &(light.distanceNear), .FLOAT)
|
||||
rl.SetShaderValue(light.shader^, light.distanceFarLoc, &(light.distanceFar), .FLOAT)
|
||||
rl.SetShaderValue(light.shader^, light.powerLoc, &(light.power), .FLOAT)
|
||||
rl.SetShaderValue(light.shader^, light.enabledLoc, &(light.enabled), .INT)
|
||||
rl.SetShaderValue(light.shader^, light.enabledLoc, &(light.enabled), .INT)
|
||||
rl.SetShaderValue(light.shader^, light.positionLoc, &(light.position), .VEC3)
|
||||
rl.SetShaderValue(light.shader^, light.colorLoc, &(light.color), .VEC4)
|
||||
}
|
||||
|
||||
move_light :: proc(light: ^Light, pos: [3]f32) {
|
||||
light.position = pos
|
||||
rl.SetShaderValue(light.shader^, light.positionLoc, &(light.position), .VEC3)
|
||||
}
|
||||
|
||||
MAX_LIGHTS :: 32
|
||||
|
||||
lights := [MAX_LIGHTS]Light{}
|
||||
|
||||
main :: proc() {
|
||||
rl.SetConfigFlags({.WINDOW_RESIZABLE, .MSAA_4X_HINT})
|
||||
rl.InitWindow(900, 600, "flash")
|
||||
// rl.ToggleBorderlessWindowed()
|
||||
|
||||
checker := rl.GenImageChecked(128, 128, 32, 32, {128, 128, 128, 255}, {150, 150, 150, 255})
|
||||
defer rl.UnloadImage(checker)
|
||||
checktex := rl.LoadTextureFromImage(checker)
|
||||
defer rl.UnloadTexture(checktex)
|
||||
checkmtl := rl.LoadMaterialDefault()
|
||||
rl.SetMaterialTexture(&checkmtl, .ALBEDO, checktex)
|
||||
checkplane := rl.GenMeshPlane(30, 30, 1, 1)
|
||||
rl.GenMeshTangents(&checkplane)
|
||||
|
||||
|
||||
w, h := rl.GetScreenWidth(), rl.GetScreenHeight()
|
||||
pixelize: i32 = 2
|
||||
target := rl.LoadRenderTexture(w / pixelize, h / pixelize)
|
||||
posttarget := rl.LoadRenderTexture(w / pixelize, h / pixelize)
|
||||
|
||||
palette := rl.LoadTexture("assets/gfx/bluem0ld-1x.png")
|
||||
rl.SetTextureFilter(palette, .POINT)
|
||||
|
||||
shader := rl.LoadShaderFromMemory(vshader, fshader)
|
||||
posterizer := rl.LoadShaderFromMemory(nil, postprocess)
|
||||
poster_palette := rl.GetShaderLocation(posterizer, "texture1")
|
||||
checkmtl.shader = shader
|
||||
|
||||
for i := 0; i < 4; i += 1 {
|
||||
light_new(&shader, {}, 0, 10, 0.8)
|
||||
}
|
||||
lights[0].power = 0.9
|
||||
lights[0].distanceNear = 0
|
||||
lights[0].distanceFar = 15
|
||||
light_update_uniforms(&lights[0])
|
||||
rl.SetShaderValue(shader, lights[0].distanceNearLoc, &(lights[0].distanceNear), .FLOAT)
|
||||
rl.SetShaderValue(shader, lights[0].powerLoc, &(lights[0].power), .FLOAT)
|
||||
|
||||
// sponza := rl.LoadModel("assets/models/sponza.glb")
|
||||
// for &material in sponza.materials[:sponza.materialCount] {
|
||||
// material.shader = shader
|
||||
// }
|
||||
mdl := rl.LoadModel("assets/models/unnamed.obj")
|
||||
for &material in mdl.materials[:mdl.materialCount] {
|
||||
material.shader = shader
|
||||
}
|
||||
Tri :: [3][3]f32
|
||||
tris := [dynamic]Tri{}
|
||||
// vtx := [dynamic]f32{}
|
||||
scale: f32 = 0.04
|
||||
for &mesh in mdl.meshes[:mdl.meshCount] {
|
||||
// mesh := mdl.meshes[mdl.meshCount-1]
|
||||
fmt.printf("Mesh: %d %d\n", mesh.vertexCount, mesh.triangleCount)
|
||||
for i: i32 = 0; i < mesh.vertexCount * 3; i += 9 {
|
||||
append(
|
||||
&tris,
|
||||
Tri {
|
||||
{
|
||||
mesh.vertices[i] * scale,
|
||||
mesh.vertices[i + 1] * scale,
|
||||
mesh.vertices[i + 2] * scale,
|
||||
},
|
||||
{
|
||||
mesh.vertices[i + 3] * scale,
|
||||
mesh.vertices[i + 4] * scale,
|
||||
mesh.vertices[i + 5] * scale,
|
||||
},
|
||||
{
|
||||
mesh.vertices[i + 6] * scale,
|
||||
mesh.vertices[i + 7] * scale,
|
||||
mesh.vertices[i + 8] * scale,
|
||||
},
|
||||
},
|
||||
)
|
||||
// append(&vtx, mesh.vertices[i] * scale)
|
||||
}
|
||||
}
|
||||
|
||||
fmt.println("====\nMESH COUNT: ", mdl.meshCount, "\n===")
|
||||
// for tri in tris {
|
||||
// fmt.println(tri[0], tri[1], tri[2], sep = "\n")
|
||||
// }
|
||||
|
||||
look_angles: rl.Vector2 = 0
|
||||
cam := rl.Camera3D {
|
||||
position = {0, 5, 0},
|
||||
target = {1, 2, 0},
|
||||
up = {0, 1, 0},
|
||||
fovy = 90,
|
||||
projection = .PERSPECTIVE,
|
||||
}
|
||||
vel: rl.Vector3
|
||||
|
||||
|
||||
rotation: f32 = 0.0
|
||||
|
||||
rl.DisableCursor()
|
||||
|
||||
for !rl.WindowShouldClose() {
|
||||
if rl.IsWindowResized() {
|
||||
w, h = rl.GetScreenWidth(), rl.GetScreenHeight()
|
||||
rl.UnloadRenderTexture(target)
|
||||
target = rl.LoadRenderTexture(w / pixelize, h / pixelize)
|
||||
rl.UnloadRenderTexture(posttarget)
|
||||
posttarget = rl.LoadRenderTexture(w / pixelize, h / pixelize)
|
||||
}
|
||||
// rl.UpdateCamera(&cam, .FIRST_PERSON)
|
||||
delta := rl.GetFrameTime()
|
||||
|
||||
rot :=
|
||||
linalg.quaternion_from_euler_angle_y_f32(look_angles.y) *
|
||||
linalg.quaternion_from_euler_angle_x_f32(look_angles.x)
|
||||
|
||||
forward := linalg.quaternion128_mul_vector3(rot, linalg.Vector3f32{0, 0, 1})
|
||||
right := linalg.quaternion128_mul_vector3(rot, linalg.Vector3f32{1, 0, 0})
|
||||
|
||||
look_angles.y -= rl.GetMouseDelta().x * 0.0015
|
||||
look_angles.x += rl.GetMouseDelta().y * 0.0015
|
||||
|
||||
SPEED :: 70
|
||||
RAD :: 1
|
||||
|
||||
moving := false
|
||||
if rl.IsKeyDown(.W) {
|
||||
vel.xz += forward.xz * delta * SPEED
|
||||
moving = true
|
||||
}
|
||||
if rl.IsKeyDown(.S) {
|
||||
vel.xz -= forward.xz * delta * SPEED
|
||||
moving = true
|
||||
}
|
||||
if rl.IsKeyDown(.D) {
|
||||
vel.xz -= right.xz * delta * SPEED
|
||||
moving = true
|
||||
}
|
||||
if rl.IsKeyDown(.A) {
|
||||
vel.xz += right.xz * delta * SPEED
|
||||
moving = true
|
||||
}
|
||||
vel.xz = rl.Vector2ClampValue(vel.xz, 0, 3)
|
||||
|
||||
if rl.IsKeyDown(.E) do vel.y += delta * SPEED
|
||||
if rl.IsKeyDown(.Q) do vel.y -= delta * SPEED
|
||||
|
||||
// gravity
|
||||
vel.y -= delta * 10 * (vel.y < 0.0 ? 2 : 1)
|
||||
|
||||
if rl.IsKeyPressed(.SPACE) do vel.y = 8
|
||||
|
||||
// damping
|
||||
vel *= 1.0 / (1.0 + delta * 2)
|
||||
|
||||
// Collide
|
||||
for t in tris {
|
||||
closest := closest_point_on_triangle(cam.position, t[0], t[1], t[2])
|
||||
diff := cam.position - closest
|
||||
diff.xz *= 2
|
||||
dist := linalg.length(diff)
|
||||
normal := diff / dist
|
||||
|
||||
rl.DrawCubeV(closest, 0.05, dist > RAD ? rl.ORANGE : rl.WHITE)
|
||||
|
||||
if dist < RAD {
|
||||
cam.position += normal * (RAD - dist)
|
||||
// project velocity to the normal plane, if moving towards it
|
||||
vel_normal_dot := linalg.dot(vel, normal)
|
||||
if vel_normal_dot < 0 {
|
||||
vel -= normal * vel_normal_dot
|
||||
if normal.y > 0.5 && !moving {
|
||||
vel.xz *= 0.5
|
||||
vel.y = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cam.position += vel * delta
|
||||
cam.target = cam.position + forward
|
||||
|
||||
|
||||
rotation += delta
|
||||
rl.BeginTextureMode(target)
|
||||
rl.ClearBackground(rl.BLACK)
|
||||
rl.BeginMode3D(cam)
|
||||
for &light, i in lights[1:] {
|
||||
if light.enabled == 0 do continue
|
||||
color: [4]u8 = {
|
||||
u8(light.color.r * 255),
|
||||
u8(light.color.g * 255),
|
||||
u8(light.color.b * 255),
|
||||
u8(light.color.a * 255),
|
||||
}
|
||||
move_light(
|
||||
&light,
|
||||
{
|
||||
math.cos_f32(rotation + (f32(i) / f32(3)) * math.PI * 2) * 5,
|
||||
3,
|
||||
math.sin_f32(rotation + (f32(i) / f32(3)) * math.PI * 2) * 5,
|
||||
},
|
||||
)
|
||||
rl.DrawSphere(light.position, 0.1, transmute(rl.Color)color)
|
||||
}
|
||||
move_light(&lights[0], cam.position)
|
||||
// for &tri in tris {
|
||||
// rl.DrawSphere(tri[0], 0.5, rl.WHITE)
|
||||
// rl.DrawSphere(tri[1], 0.5, rl.WHITE)
|
||||
// rl.DrawSphere(tri[2], 0.5, rl.WHITE)
|
||||
// rl.DrawTriangle3D(tri[0], tri[1], tri[2], rl.RED)
|
||||
// }
|
||||
rl.BeginShaderMode(shader)
|
||||
rl.DrawModelEx(mdl, {}, {}, 0, 0.04, rl.WHITE)
|
||||
|
||||
rl.EndShaderMode()
|
||||
rl.EndMode3D()
|
||||
rl.EndTextureMode()
|
||||
// rl.BeginDrawing()
|
||||
rl.BeginTextureMode(posttarget)
|
||||
// rl.BeginShaderMode(posterizer)
|
||||
rl.SetShaderValueTexture(posterizer, poster_palette, palette)
|
||||
rl.DrawTexture(target.texture, 0, 0, rl.WHITE)
|
||||
// rl.EndShaderMode()
|
||||
rl.EndTextureMode()
|
||||
|
||||
rl.BeginDrawing()
|
||||
rl.DrawTexturePro(
|
||||
posttarget.texture,
|
||||
rl.Rectangle{0, 0, f32(w / pixelize), f32(h / pixelize)},
|
||||
{0, 0, f32(w), f32(h)},
|
||||
{},
|
||||
0,
|
||||
rl.WHITE,
|
||||
)
|
||||
rl.EndDrawing()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
vshader: cstring = #load("../assets/shaders/vshader.glsl", cstring)
|
||||
fshader: cstring = #load("../assets/shaders/fshader.glsl", cstring)
|
||||
postprocess: cstring = #load("../assets/shaders/postprocess.glsl", cstring)
|
||||
|
||||
|
||||
// Real Time collision detection 5.1.5
|
||||
closest_point_on_triangle :: proc(p, a, b, c: rl.Vector3) -> rl.Vector3 {
|
||||
// Check if P in vertex region outside A
|
||||
ab := b - a
|
||||
ac := c - a
|
||||
ap := p - a
|
||||
d1 := linalg.dot(ab, ap)
|
||||
d2 := linalg.dot(ac, ap)
|
||||
if d1 <= 0.0 && d2 <= 0.0 do return a // barycentric coordinates (1,0,0)
|
||||
// Check if P in vertex region outside B
|
||||
bp := p - b
|
||||
d3 := linalg.dot(ab, bp)
|
||||
d4 := linalg.dot(ac, bp)
|
||||
if d3 >= 0.0 && d4 <= d3 do return b // barycentric coordinates (0,1,0)
|
||||
// Check if P in edge region of AB, if so return projection of P onto AB
|
||||
vc := d1 * d4 - d3 * d2
|
||||
if vc <= 0.0 && d1 >= 0.0 && d3 <= 0.0 {
|
||||
v := d1 / (d1 - d3)
|
||||
return a + v * ab // barycentric coordinates (1-v,v,0)
|
||||
}
|
||||
// Check if P in vertex region outside C
|
||||
cp := p - c
|
||||
d5 := linalg.dot(ab, cp)
|
||||
d6 := linalg.dot(ac, cp)
|
||||
if d6 >= 0.0 && d5 <= d6 do return c // barycentric coordinates (0,0,1)
|
||||
// Check if P in edge region of AC, if so return projection of P onto AC
|
||||
vb := d5 * d2 - d1 * d6
|
||||
if vb <= 0.0 && d2 >= 0.0 && d6 <= 0.0 {
|
||||
w := d2 / (d2 - d6)
|
||||
return a + w * ac // barycentric coordinates (1-w,0,w)
|
||||
}
|
||||
// Check if P in edge region of BC, if so return projection of P onto BC
|
||||
va := d3 * d6 - d5 * d4
|
||||
if va <= 0.0 && (d4 - d3) >= 0.0 && (d5 - d6) >= 0.0 {
|
||||
w := (d4 - d3) / ((d4 - d3) + (d5 - d6))
|
||||
return b + w * (c - b) // barycentric coordinates (0,1-w,w)
|
||||
}
|
||||
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
|
||||
denom := 1.0 / (va + vb + vc)
|
||||
v := vb * denom
|
||||
w := vc * denom
|
||||
return a + ab * v + ac * w // = u*a + v*b + w*c, u = va * denom = 1.0-v-w
|
||||
}
|
||||
|
Reference in New Issue
Block a user